Effects of systemic NO synthesis inhibition on RPF, GFR, UNa, and vasoactive hormones in healthy humans

Author:

Bech J. N.1,Nielsen C. B.1,Pedersen E. B.1

Affiliation:

1. Research Laboratory for Hypertension and Nephrology, Skejby Hospital,University Hospital in Aarhus, Denmark.

Abstract

Animal studies have implicated an important role of nitric oxide (NO) in the regulation of blood pressure, renal hemodynamics, and renal excretion of sodium. NG-monomethyl-L-arginine (L-NMMA) is a specific, competitive inhibitor of NO synthesis interfering with NO synthase. The purpose of the present study was to investigate the effect of L-NMMA on renal plasma flow (RPF), glomerular filtration rate (GFR), urinary sodium excretion (UNa), fractional sodium excretion (FENa), fractional lithium excretion (FELi), mean arterial blood pressure (MAP), and heart rate (HR) in healthy humans. In a randomized placebo-controlled study, 23 healthy subjects were randomized to receive either bolus injection of L-NMMA (3 mg/kg in 10 ml saline, n = 12 subjects) or placebo (10 ml saline, n = 11). GFR and RPF were measured using the renal clearances of 51Cr-labeled EDTA and 125I-labeled hippuran by the constant infusion technique. L-NMMA treatment induced 60 min after injection a 14.6% decrease in RPF, a 5.8% decrease in GFR, a 9.8% increase in filtration fraction, a 34.7% decrease in UNa a 28.6% decrease in FENa, and a 12.1% decrease in FELi. These changes were still evident 120 min after injection. None of the effect parameters were changed after placebo, except FENa, which increased 9.9% 60 min after injection. Ten minutes after L-NMMA injection, MAP increased significantly (80 vs. 88 mmHg), and HR decreased (58 vs. 47 beats/min). The changes in HR and MAP normalized within 30 min. L-NMMA significantly reduced the plasma level of cGMP 60 min (3.0 vs. 3.7 pmol/l) and 120 min after injection (2.5 vs. 3.7 pmol/l). It is concluded that, in healthy humans, NO is a regulator of renal hemodynamics as a tonic vasodilator and a regulator of sodium excretion, due at least in part to a proximal tubular effect.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3