Affiliation:
1. Department of Veterans Affairs, James A. Haley Veterans Hospital,Tampa, Florida 33612, USA.
Abstract
Adenosine A1 receptor densities were increased in cultured LLC-PK1 and OK cells by chronic treatment with the adenosine receptor antagonists 1,3,7-trimethylxanthine (caffeine, 1 mM) and 1,3-dimethyl-8-cyclopentylxanthine [cyclopentyltheophylline (CPT), < or = 0.4 mM], respectively. The A1 receptor number per cell was increased twofold by 10-day treatments with 1 mM caffeine or 0.1 mM CPT, and the sodium-coupled glucose uptake was augmented twofold by 1 mM caffeine and sevenfold by 0.1 microM CPT (higher doses of CPT were progressively less stimulatory). Glucose uptake was blocked by acute (2-h) treatment with CPT, adenosine deaminase, or calphostin C. Caffeine (1 mM) or CPT (> or = 0.1 mM) inhibited cell proliferation for the first 10 days, then cell growth assumed a normal proliferative rate despite continued presence of antagonist. Cytosolic protein kinase C (PKC) beta-isoform immunoactivity and PKC-beta II mRNA were elevated at least twofold during 10 days of 0.1 mM CPT or 1 mM caffeine treatment. The sustained elevation in sodium-glucose symport and PKC activity observed with adenosine receptor antagonists was similar to acute (2-h) effects of the adenosine A1 agonist R(-)-N6-phenylisopropyladenosine (R-PIA, 0.1-1 microM). Moreover, cell proliferation was increased by adenosine (0.1 microM R-PIA), whereas Na-K-adenosinetriphosphatase activity was unaltered with chronic antagonist or acute adenosine treatments. Caffeine treatment may have some non-adenosine A1 receptor-mediated actions, because it slightly (30%) augmented protein kinase A activity. It is concluded that chronic exposure of proximal tubule cells to caffeine or CPT augments PKC and sodium-glucose transport but retards cell proliferation mainly via adenosine A1 receptor-mediated mechanisms.
Publisher
American Physiological Society
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献