Both the wild type and a functional isoform of CFTR are expressed in kidney

Author:

Morales M. M.1,Carroll T. P.1,Morita T.1,Schwiebert E. M.1,Devuyst O.1,Wilson P. D.1,Lopes A. G.1,Stanton B. A.1,Dietz H. C.1,Cutting G. R.1,Guggino W. B.1

Affiliation:

1. Department of Physiology, Johns Hopkins University School of MedicineBaltimore, Maryland 21205, USA.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) consists of five domains, two transmembrane-spanning domains, each composed of six transmembrane segments, a regulatory domain, and two nucleotide-binding domains (NBDs). CFTR is expressed in kidney, but its role in overall renal function is not well understood, because mutations in CFTR found in patients with cystic fibrosis are not associated with renal dysfunction. To learn more about the distribution and functional forms of CFTR in kidney, we used a combination of molecular, cell biological, and electrophysiological approaches. These include an evaluation of CFTR mRNA and protein expression, as well as both two-electrode and patch clamping of CFTR expressed either in Xenopus oocytes or mammalian cells. In addition to wild-type CFTR mRNA, an alternate form containing only the first transmembrane domain (TMD), the first NBD, and the regulatory domain (TNR-CFTR) is expressed in kidney. Although missing the second set of TMDs and the second NBD, when expressed in Xenopus oocytes, TNR-CFTR has cAMP-dependent protein kinase A (PKA)-stimulated single Cl- channel characteristics and regulation of PKA activation of outwardly rectifying Cl- channels that are very similar to those of wild-type CFTR. TNR-CFTR mRNA is produced by an unusual mRNA processing mechanism and is expressed in a tissue-specific manner primarily in renal medulla.

Publisher

American Physiological Society

Subject

Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3