Affiliation:
1. Department of Physiology and Biophysics, University of SouthernCalifornia School of Medicine, Los Angeles 90033, USA.
Abstract
Acute arterial hypertension provokes a rapid decrease in proximal tubule (PT) Na+ reabsorption, increasing flow to the macula densa, the signal for tubuloglomerular feedback. We tested the hypothesis, in rats, that Na+ transport is decreased due to rapid redistribution of apical Na+/H+ exchangers and basolateral Na+ pumps to internal membranes. Arterial pressure was increased 50 mmHg by constricting various arteries. We also tested whether transporter internalization occurred when PT Na+ reabsorption was inhibited with the carbonic anhydrase inhibitor benzolamide. Five minutes after initiating either natriuretic stimuli, cortex was removed, and membranes were fractionated by density gradient centrifugation. Urine output and endogenous lithium clearance increased threefold in response to either stimuli. Acute hypertension provoked a redistribution of apical Na+/H+ exchanger NHE3, alkaline phosphatase, and dipeptidyl peptidase IV to higher density membranes enriched in the intracellular membrane markers. Basolateral membrane Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase) activity decreased 50%, 25-30% of the alpha 1-and beta 1-subunits redistributed to higher density membranes, and the remainder is attributed to decreased activity of the transporters. Benzolamide did not alter Na+ transporter activity or distribution, implying that decreasing apical Na+ uptake does not initiate redistribution or inhibition of basolateral Na(+)-K(+)-ATPase. We conclude that PT natriuresis provoked by acute arterial pressure is mediated by both endocytic removal of apical Na+/H+ exchangers and basolateral Na+ pumps as well as decreased total Na+ pump activity.
Publisher
American Physiological Society
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献