Developmental regulation of CFTR expression during human nephrogenesis

Author:

Devuyst O.1,Burrow C. R.1,Schwiebert E. M.1,Guggino W. B.1,Wilson P. D.1

Affiliation:

1. Department of Medicine, Johns Hopkins University, Medical School,Baltimore, Maryland 21205, USA.

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) mRNA and protein are expressed in proximal and distal tubules of the human kidney, but CFTR expression pattern during human nephrogenesis is unknown. We have now studied CFTR expression in fetal kidneys by immunohistochemistry and Western blot analysis, using six antibodies against human CFTR. CFTR was expressed in 12-wk human fetal kidneys, mostly in the apical membrane region of the ureteric bud epithelial cells. By 15 wk, CFTR was also diffusely expressed throughout the cytoplasm of proximal tubules and loops of Henle. No glomerular staining was seen at any state. From 15 to 24 wk of gestation this staining pattern remained constant and also included immunoreactivity of the transitional epithelium. Western blot for CFTR was performed on membrane extracts of human fetal kidneys, using T84 cells as a positive control. A 165-kDa protein corresponding to the predicted size of CFTR was seen at 13 wk and throughout development. We also observed a 75-kDa protein that was distinctly regulated during development. This protein was detected with several antibodies against the first half of CFTR (including the regulatory "R" domain) but not with a COOH-terminal-specific antibody and had the predicted size of a functional splice variant of CFTR identified in the human kidney. These results show the complex regulation of CFTR during nephrogenesis and raise the question of the respective roles of the full-length and the splice variant CFTR proteins in the human kidney.

Publisher

American Physiological Society

Subject

Physiology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3