Spontaneous blood pressure fluctuations and renal blood flow dynamics

Author:

Cupples W. A.1,Novak P.1,Novak V.1,Salevsky F. C.1

Affiliation:

1. Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.

Abstract

Two mechanisms operating at 0.03-0.05 and 0.1-0.2 Hz are involved in autoregulation of renal blood flow (RBF). To examine the behavior of the faster system, the response of RBF to spontaneous fluctuations of arterial pressure was assessed in Sprague-Dawley rats anesthetized by isoflurane or halothane. During halothane anesthesia, autonomous oscillation of total RBF was observed at 0.10-0.15 Hz, and normalized admittance gain became negative at 0.11 +/- 0.01 Hz. During isoflurane anesthesia, there was autonomous power in blood flow in a broad peak between 0.15 and 0.25 Hz, and gain became negative at 0.15 +/- 0.01 Hz. Increasing inspired isoflurane concentration from 1.4 +/- 0.1% to 2.2 +/- 0.1% reduced pressure by 22 +/- 2 mmHg but did not alter blood flow or the transfer function, indicating that the operating frequency was not changed. In another experiment, changing from isoflurane to halothane increased peak power in the autonomous blood flow oscillation fivefold and reduced its frequency from 0.18 +/- 0.01 to 0.14 +/- 0.01 Hz. Gain became negative at a higher frequency (0.16 +/- 0.01 Hz) during isoflurane than halothane anesthesia (0.12 +/- 0.01 Hz). The results show that the 0.1–0.2 Hz system is reliably detected under unforced conditions and provides modest attenuation of pressure fluctuations at < or = 0.1 Hz. Its operating frequency under isoflurane anesthesia is consistent with previous estimates from barbiturate-anesthetized rats, whereas it operates significantly slower under halothane anesthesia.

Publisher

American Physiological Society

Subject

Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3