Author:
Cancherini Douglas V.,Trabuco Leonardo G.,Rebouças Nancy A.,Kowaltowski Alicia J.
Abstract
Isolated kidney mitochondria swell when incubated in hyposmotic solutions containing K+ salts in a manner inhibited by ATP, ADP, 5-hydroxydecanoate, and glibenclamide and stimulated by GTP and diazoxide. These results suggest the existence of ATP-sensitive K+ channels in these mitochondria, similar to those previously described in heart, liver, and brain. Renal mitochondrial ATP-sensitive K+ uptake rates are ∼140 nmol·min–1·mg protein–1. This K+ transport results in a slight increase in respiration and decrease in the inner membrane potential. In addition, the activation of ATP-inhibited K+ uptake using diazoxide leads to a decrease of ATP hydrolysis through the reverse activity of the F0F1 ATP synthase when respiration is inhibited. In conclusion, we characterize an ATP-sensitive K+ transport pathway in kidney mitochondria that affects volume, respiration, and membrane potential and may have a role in the prevention of mitochondrial ATP hydrolysis.
Publisher
American Physiological Society
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献