FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player?

Author:

Razzaque M. Shawkat

Abstract

Understanding the physiological regulation of mineral ion metabolism is essential for determining the pathomechanisms of skeletal, vascular, and renal diseases associated with an abnormal regulation of calcium and phosphate homeostasis. Normal calcium and phosphate balance is delicately maintained by endocrine factors that coordinate to influence the functions of the intestine, bone, parathyroid gland, and kidney. Under physiological conditions, the kidneys play an important role in maintaining normal mineral ion balance by fine-tuning the amount of urinary excretion of calcium and phosphate according to the body's needs. Fibroblast growth factor (FGF)23 regulates urinary phosphate excretion to maintain systemic phosphate homeostasis. The exact mode of action of the phosphaturic effects of FGF23 is not fully understood and is an intense area of research. Studies suggest, however, that FGF23, by interacting with FGF receptors, can initiate downstream signaling events and that Klotho, a transmembrane protein, facilitates the interaction of FGF23 with its receptor. FGF23 can inhibit the activities of 1-α-hydroxylase and sodium-phosphate cotransporter in the kidney to influence the overall systemic phosphate balance. This article briefly summarizes how FGF23 might coordinately regulate systemic phosphate homeostasis and how Klotho is involved in such regulation.

Publisher

American Physiological Society

Subject

Physiology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3