Acute kidney injury induces hallmarks of polycystic kidney disease

Author:

Kurbegovic Almira1,Trudel Marie1

Affiliation:

1. Molecular Genetics and Development, Institut de Recherches Cliniques de Montréal, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada

Abstract

Acute kidney injury (AKI) and autosomal dominant polycystic kidney disease (ADPKD) are considered separate entities that both frequently cause renal failure. Since ADPKD appears to depend on a polycystin-1 (Pc1) or Pc2 dosage mechanism, we investigated whether slow progression of cystogenesis in two Pkd1 transgenic mouse models can be accelerated with moderate ischemia-reperfusion injury (IRI). Transient unilateral left ischemic kidneys in both nontransgenic and transgenic mice reproducibly develop tubular dilatations, cysts, and typical PKD cellular defects within 3 mo post-IRI. Similar onset and severity of IRI induced-cystogenesis independently of genotype revealed that IRI is sufficient to promote renal cyst formation; however, this response was not further amplified by the transgene in Pkd1 mouse models. The IRI nontransgenic and transgenic kidneys showed from 16 days post-IRI strikingly increased and sustained Pkd1/Pc1 (>3-fold) and Pc2 (>8-fold) expression that can individually be cystogenic in mice. In parallel, long-term and important stimulation of hypoxia-inducible factor 1α expression was induced as in polycystic kidney disease. While mammalian target of rapamycin signaling is activated, stimulation of the Wnt pathway, with markedly increased active β-catenin and c-Myc expression in IRI renal epithelium, uncovered a similar regulatory cystogenic response shared by IRI and ADPKD. Our study demonstrates that long-term AKI induces cystogenesis and cross talk with ADPKD Pc1/Pc2 pathogenic signaling.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Polycystic Kidney Disease Foundation of Canada

Polycystic Kidney Disease Foundation of USA

Banting and Best Canada Graduate Scholarship Award-CIHR

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3