Angiotensin receptor blockers shift the circadian rhythm of blood pressure by suppressing tubular sodium reabsorption

Author:

Fukuda Michio1,Wakamatsu-Yamanaka Tamaki1,Mizuno Masashi1,Miura Toshiyuki1,Tomonari Tatsuya1,Kato Yoko1,Ichikawa Tadashi1,Miyagi Sota1,Shirasawa Yuichi1,Ito Akinori1,Yoshida Atsuhiro1,Kimura Genjiro1

Affiliation:

1. Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

Abstract

Recently, we found that an angiotensin II receptor blocker (ARB) restored the circadian rhythm of the blood pressure (BP) from a nondipper to a dipper pattern, similar to that achieved with sodium intake restriction and diuretics (Fukuda M, Yamanaka T, Mizuno M, Motokawa M, Shirasawa Y, Miyagi S, Nishio T, Yoshida A, Kimura G. J Hypertens 26: 583–588, 2008). ARB enhanced natriuresis during the day, while BP was markedly lower during the night, resulting in the dipper pattern. In the present study, we examined whether the suppression of tubular sodium reabsorption, similar to the action of diuretics, was the mechanism by which ARB normalized the circadian BP rhythm. BP and glomerulotubular balance were compared in 41 patients with chronic kidney disease before and during ARB treatment with olmesartan once a day in the morning for 8 wk. ARB increased natriuresis (sodium excretion rate; UNaV) during the day (4.5 ± 2.2 to 5.5 ± 2.1 mmol/h, P = 0.002), while it had no effect during the night (4.3 ± 2.0 to 3.8 ± 1.6 mmol/h, P = 0.1). The night/day ratios of both BP and UNaV were decreased. The decrease in the night/day ratio of BP correlated with the increase in the daytime UNaV ( r = 0.42, P = 0.006). Throughout the whole day, the glomerular filtration rate ( P = 0.0006) and tubular sodium reabsorption ( P = 0.0005) were both reduced significantly by ARB, although UNaV remained constant (107 ± 45 vs. 118 ± 36 mmol/day, P = 0.07). These findings indicate that the suppression of tubular sodium reabsorption, showing a resemblance to the action of diuretics, is the primary mechanism by which ARB can shift the circadian BP rhythm into a dipper pattern.

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3