Greater tolerance of renal medullary cells for a slow increase in osmolality is associated with enhanced expression of HSP70 and other osmoprotective genes

Author:

Cai Qi1,Ferraris Joan D.1,Burg Maurice B.1

Affiliation:

1. Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung,and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603

Abstract

In tests of osmotic tolerance of renal inner medullary cells in tissue culture, osmolality has usually been increased in a single step, whereas in vivo the increase occurs gradually over several hours. We previously found that more passage 2 mouse inner medullary epithelial (p2mIME) cells survive a linear increase in NaCl and urea from 640 to 1,640 mosmol/kgH2O over 20 h (which is similar to the change that may occur in vivo) than they do a step increase. The present studies examine accompanying differences in gene expression. Among mRNAs of genes known to be protective, tonicity-responsive enhancer binding protein and aldose reductase increase with a linear but decrease with a step increase; betaine transporter BGT1 decreases with a step but not a linear increase; heat shock protein 70.1 ( HSP70.1) and HSP70.3 increase more with a linear than a step increase; and osmotic stress protein 94 and heme oxygenase-1 increase with a linear but decrease with a step increase. mRNAs for known urea-responsive proteins, GADD153 and Egr-1, increase with both a step and linear increase. A step increase in urea alone reduces mRNAs, similar to the combination of NaCl and urea, but a step increase in NaCl alone does not. HSP70 protein increases substantially with a linear rise in osmolality but does not change significantly with a step rise. We speculate that poorer survival of p2mIME cells with a step than with linear increase in NaCl and urea is accounted for, at least in part, by urea-induced suppression of protective genes, particularly HSP70.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3