RNA-Seq profiling of microdissected glomeruli identifies potential biomarkers for human IgA nephropathy

Author:

Park Sehoon12,Yang Seung Hee3,Jeong Chang Wook4,Moon Kyung Chul5,Kim Dong Ki367,Joo Kwon Wook367,Kim Yon Su2367,Lee Jae Wook38,Lee Hajeong67

Affiliation:

1. Department of Internal Medicine, Armed Forces Capital Hospital, Seoul, Korea

2. Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea

3. Kidney Research Institute, Seoul National University, Seoul, Korea

4. Department of Urology, Seoul National University Hospital, Seoul, Korea

5. Department of Pathology, Seoul National University Hospital, Seoul, Korea

6. Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea

7. Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea

8. Division of Nephrology, Department of Internal Medicine, National Cancer Center, Goyang, Korea

Abstract

Few studies have examined gene expression changes occurring in the glomeruli of IgA nephropathy (IgAN) using a sensitive transcriptomic profiling method such as RNA sequencing (RNA-Seq). We collected glomeruli from biopsy specimens from patients with IgAN with relatively preserved kidney function (estimated glomerular filtration rate ≥ 60 mL·min−1·1.73 m−2 and urine protein-to-creatinine ratio < 3 g/g) and from normal kidney cortexes by hand microdissection and performed RNA-Seq. Differentially expressed genes were identified, and gene ontology term annotation and pathway analysis were performed. Immunohistochemical labeling and primary mesangial cell cultures were performed to confirm the findings of RNA-Seq analysis. Fourteen patients with IgAN and ten controls were included in this study. Glomerulus-specific genes were highly abundant. Principal component analysis showed clear separation between the IgAN and control groups. There were 2,497 differentially expressed genes, of which 1,380 were upregulated and 1,117 were downregulated (false discovery rate < 0.01). The enriched gene ontology terms included motility/migration, protein/vesicle transport, and immune system, and kinase binding was the molecular function overrepresented in IgAN. B cell signaling, chemokine signal transduction, and Fcγ receptor-mediated phagocytosis were the canonical pathways overrepresented. In vitro experiments confirmed that spleen tyrosine kinase (SYK), reported as upregulated in the IgAN transcriptome, was also upregulated in glomeruli from an independent set of patients with IgAN and that treatment with patient-derived IgA1 increased the expression of SYK in mesangial cells. In conclusion, transcriptomic profiling of the IgAN glomerulus provides insights in the intraglomerular pathophysiology of IgAN before it reaches profound kidney dysfunction. SYK may have a pathogenetic role in IgAN.

Funder

Ministry of Health and Welfare

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3