Thyroid hormone modulates rabbit proximal straight tubule paracellular permeability

Author:

Baum Michel,Quigley Raymond

Abstract

Proximal straight tubules (PST) from both neonatal and hypothyroid adult rabbits have a lower rate of passive volume absorption when perfused with a high-chloride solution simulating late proximal tubular fluid than adult rabbit PST. We hypothesized that the maturational increase in serum thyroid hormone levels mediates the developmental changes in PST paracellular permeability. Neonatal tubules had lower chloride permeability, higher transepithelial resistance, but comparable mannitol permeability compared with adult PST. The present in vitro microperfusion study directly examined whether thyroid hormone affects passive solute flux and whether thyroid hormone could explain the developmental changes in PST paracellular permeability. Passive chloride transport was 62.1 ± 4.5, 23.1 ± 7.7, and 111.6 ± 5.6 pmol·mm-1·min-1 in PST from euthyroid, hypothyroid, and hypothyroid animals that received thyroid treatment, respectively (control different from hypothyroid and thyroid treatment at P < 0.05). This was due to a thyroid hormone-mediated change in chloride permeability ( PCl). Mannitol permeability was 3.65 + 1.03, -0.19 + 0.72, and 3.60 + 1.12 × 10-6 cm/s in PST from euthyroid animals, hypothyroid animals, and hypothyroid rabbits that received thyroid replacement, respectively ( P < 0.05 hypothyroid vs. euthyroid and thyroid replacement). We demonstrate that PST from hypothyroid animals have a higher passive PNa/ PCl and PHCO3/ PCl than euthyroid controls. Finally, we examined whether these changes in permeability were paralleled by a change in PST paracellular resistance. Resistance was measured by current injection and cable analysis. The resistance in PST from hypothyroid rabbits was 6.3 ± 0.8 Ω·cm2, which was not different from control of 4.8 ± 0.7 Ω·cm2, or 7.0 ± 0.7 Ω·cm2 in hypothyroid animals that received thyroid replacement. Therefore, the maturational increase in thyroid hormone levels does not fully explain the developmental changes in the paracellular pathway.

Publisher

American Physiological Society

Subject

Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postnatal Renal Maturation;Pediatric Nephrology;2022

2. Postnatal Renal Maturation;Pediatric Nephrology;2021

3. Thyroid Function Modulates Lung Fluid and Alveolar Viscoelasticity in Mechanically Ventilated Rat;Journal of Surgical Research;2020-09

4. Renal Aspects of Sodium Metabolism in the Fetus and Neonate;Nephrology and Fluid/electrolyte Physiology;2019

5. Renal Tubular Development;Pediatric Nephrology;2015-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3