Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury

Author:

Johnson Ali CM1,Becker Kirsten1,Zager Richard A.1

Affiliation:

1. Department of Medicine, University of Washington, and Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington

Abstract

Despite their prooxidant effects, ferric iron compounds are routinely administered to patients with renal disease to correct Fe deficiency. This study assessed relative degrees to which three clinically employed Fe formulations [Fe sucrose (FeS); Fe gluconate (FeG); ferumoxytol (FMX)] impact renal redox- sensitive signaling, cytotoxicity, and responses to superimposed stress [endotoxin; glycerol-induced acute renal failure (ARF)]. Cultured human proximal tubule (HK-2) cells, isolated proximal tubule segments (PTS), or mice were exposed to variable, but equal, amounts of FeS, FeG, or FMX. Oxidant-stimulated signaling was assessed by heme oxygenase-1 (HO-1) or monocyte chemoattractant protein (MCP)-1 mRNA induction. Cell injury was gauged by MTT assay (HK-2 cells), %LDH release (PTS), or renal cortical neutrophil gelatinase-associated lipoprotein (NGAL) protein/mRNA levels. Endotoxin sensitivity and ARF severity were assessed by TNF-α and blood urea nitrogen concentrations, respectively. FeS and FeG induced lethal cell injury (in HK-2 cells, PTS), increased HO-1 and MCP-1 mRNAs (HK-2 cells; in vivo), and markedly raised plasma (∼10 times), and renal cortical (∼3 times) NGAL protein levels. Both renal and extrarenal (e.g., hepatic) NGAL production likely contributed to these results, based on assessments of tissue and HK-2 cell NGAL mRNA. FeS pretreatment exacerbated endotoxemia. However, it conferred marked protection against the glycerol model of ARF (halving azotemia). FMX appeared to be “bioneutral,” as it exerted none of the above noted FeS/FeG effects. We conclude that 1) parenteral iron formulations that stimulate redox signaling can evoke cyto/nephrotoxicity; 2) secondary adaptive responses to this injury (e.g., HO-1/NGAL induction) can initiate a renal tubular cytoresistant state; this suggests a potential new clinical application for intravenous Fe therapy; and 3) FMX is bioneutral regarding these responses. The clinical implication(s) of the latter, vis a vis the treatment of Fe deficiency in renal disease patients, remains to be defined.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3