Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule

Author:

Lavoie Julie L.1,Lake-Bruse Kristy D.1,Sigmund Curt D.1

Affiliation:

1. Departments of Internal Medicine and Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242

Abstract

The purpose of this study was to evaluate the physiological significance of a tissue renin-angiotensin system in the proximal tubule of the kidney. To accomplish this, we produced mice that express human renin (hREN) under the control of the kidney androgen-regulated promoter (KAP), which is androgen responsive. One of the lines expressed the hREN transgene primarily in the kidney. Renal expression of the transgene was undetectable in females but could be induced by testosterone treatment. Because the renin-angiotensin system is species specific, we bred KAP2-hREN mice with the mice expressing human angiotensinogen under the same promoter (KAP-hAGT) to produce offspring that expressed both transgenes. We measured mean arterial blood pressure (MAP) in the carotid artery of double-transgenic and control mice using radiotelemetry. Double-transgenic female mice had a normal baseline MAP (116 ± 4 mmHg, n = 8), which increased by 15 mmHg after 2 wk of testosterone treatment, and returned to baseline after elimination of the testosterone pellet. The change in arterial pressure paralleled the change in plasma testosterone. There was no MAP change in testosterone-treated control littermates. We conclude that dual production of renin and angiotensinogen in the renal proximal tubule can result in a systemic increase in arterial pressure. These data support a role for a tissue-specific renin-angiotensin system in the renal proximal tubule that contributes to the regulation of systemic blood pressure.

Publisher

American Physiological Society

Subject

Physiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3