Cannabinoid receptor 1 mediates high glucose-induced apoptosis via endoplasmic reticulum stress in primary cultured rat mesangial cells

Author:

Lim Jae Cheong1,Lim Seul Ki1,Park Min Jung1,Kim Gye Yeop1,Han Ho Jae1,Park Soo Hyun1

Affiliation:

1. Bio-Therapy Human Resources Center, Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea

Abstract

The endocannabinoid system in animals and humans is involved in the onset of diverse diseases, including obesity and diabetic nephropathy, which is a major end-stage renal disease characterized by high glucose (HG)-induced apoptosis of mesangial cells. Endocannabinoids induce physiological and behavioral effects by activating two specific receptors, cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). However, the pathophysiology of CB1R in diabetic nephropathy has not been elucidated. We investigated the effects of HG on CB1R expression and its signaling pathways in primary cultured rat mesangial cells. HG significantly increased CB1R mRNA and protein levels in a time-dependent manner and induced CB1R internalization. NF-κB and cPLA2were involved in the HG-induced increase in CB1R levels. Using a CB1R antagonist (AM251) and CB1siRNA transfection, we showed that HG-induced CB1R is linked to apoptosis. Specifically, HG inhibited the expression of GRP78, but induced increases in endoplasmic reticulum (ER) stress proteins, including phosphorylated (p)-protein kinase-like ER-associated kinase, p-eukaryotic initiation factor 2α, p-activating transcription factor-4, and C/EBP homologous protein. In addition, HG increased the Bax/Bcl-2 ratio and increased the amounts of cleaved poly(ADP-ribose) polymerase and caspase-3. These apoptotic effects were prevented by AM251 and by the downregulation of CB1R expression by small interfering RNA. We propose a mechanism by which blockade of CB1R attenuates HG-induced apoptosis in rat mesangial cells. Our findings suggest that blockade of CB1R may be a potential therapy in diabetic nephropathy.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3