Physiopathological implications of P2X1and P2X7receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension

Author:

Franco Martha1ORCID,Bautista-Pérez Rocío2,Cano-Martínez Agustina3,Pacheco Ursino1,Santamaría José1,del Valle Mondragón Leonardo4,Pérez-Méndez Oscar2,Navar L. Gabriel5

Affiliation:

1. Renal Pathophysiology Laboratory, Department of Nephrology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México;

2. Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México;

3. Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México;

4. Pharmacology, Instituto Nacional de Cardiología “Ignacio Chávez,” México City, México; and

5. Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, Louisiana

Abstract

Deleterious effects of purinergic P2X1and P2X7receptors (P2XRs) in ANG II-dependent hypertension include increased renal vascular resistance, and impaired autoregulation and pressure natriuresis. However, their specific effects on the determinants of glomerular hemodynamics remain incompletely delineated. To investigate the P2XR contributions to altered glomerular hemodynamics in hypertension, the effects of acute blockade of P2X1R, P2X7R, and P2X4R with NF449, A438079, and PSB12054, respectively, were evaluated in ANG II-infused rats (435 ng·kg−1·min−1). P2X1R or P2X7R blockade reduced afferent (6.85 ± 1.05 vs. 2.37 ± 0.20 dyn·s−1·cm−5) and efferent (2.85 ± 0.38 vs. 0.99 ± 0.07 dyn·s−1·cm−5) arteriolar resistances, leading to increases in glomerular plasma flow (75.82 ± 5.58 vs. 206.7 ± 16.38 nl/min), ultrafiltration coefficient (0.0198 ± 0.0024 vs. 0.0512 ± 0.0046 nl·min−1·mmHg−1), and single-nephron glomerular filtration rate (22.73 ± 2.02 vs. 51.56 ± 3.87 nl/min) to near normal values. Blockade of P2X4R did not elicit effects in hypertensive rats. In normotensive sham-operated rats, only the P2X1R antagonist caused an increase plasma flow and single-nephron glomerular filtration rate, whereas the P2X4R antagonist induced glomerular vasoconstriction that was consistent with evidence that P2X4R stimulation increases release of nitric oxide from endothelial cells. Mean arterial pressure remained unchanged in both hypertensive and normotensive groups. Western blot analysis showed overexpression of P2X1R, P2X7R, and P2X4R proteins in hypertensive rats. Whereas it has been generally assumed that the altered glomerular vascular resistances in ANG II hypertension are due to AT1receptor-mediated vasoconstriction, these data indicate a predominant P2X1R and P2X7R control of glomerular hemodynamics in ANG II hypertension.

Funder

CONACYT

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3