Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla

Author:

Kortenoeven Marleen L. A.12,Sinke Anne P.1,Hadrup Niels13,Trimpert Christiane1,Wetzels Jack F. M.4,Fenton Robert A.2,Deen Peter M. T.1

Affiliation:

1. Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands;

2. Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark;

3. Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Søborg, Denmark

4. Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands; and

Abstract

Binding of vasopressin to its type 2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin (AQP)2 water channels to the plasma membrane, and water reabsorption from the prourine. Demeclocycline is currently used to treat hyponatremia in patients with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Demeclocycline's mechanism of action, which is poorly understood, is studied here. In mouse cortical collecting duct (mpkCCD) cells, which exhibit deamino-8-d-arginine vasopressin (dDAVP)-dependent expression of endogenous AQP2, demeclocycline decreased AQP2 abundance and gene transcription but not its protein stability. Demeclocycline did not affect vasopressin type 2 receptor localization but decreased dDAVP-induced cAMP generation and the abundance of adenylate cyclase 3 and 5/6. The addition of exogenous cAMP partially corrected the demeclocycline effect. As in patients, demeclocycline increased urine volume, decreased urine osmolality, and reverted hyponatremia in an SIADH rat model. AQP2 and adenylate cyclase 5/6 abundances were reduced in the inner medulla but increased in the cortex and outer medulla, in the absence of any sign of toxicity. In conclusion, our in vitro and in vivo data indicate that demeclocycline mainly attenuates hyponatremia in SIADH by reducing adenylate cyclase 5/6 expression and, consequently, cAMP generation, AQP2 gene transcription, and AQP2 abundance in the renal inner medulla, coinciding with a reduced vasopressin escape response in other collecting duct segments.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3