Reduced ENaC activity and blood pressure in mice with genetic knockout of the insulin receptor in the renal collecting duct

Author:

Li Lijun1,Garikepati R. Mayuri1,Tsukerman Susanna1,Kohan Donald2,Wade James B.3,Tiwari Swasti14,Ecelbarger Carolyn M.15

Affiliation:

1. Department of Medicine and

2. Department of Nephrology, University of Utah, Salt Lake City, Utah;

3. Department of Physiology, University of Maryland, Baltimore, Maryland; and

4. Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

5. Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, District of Columbia;

Abstract

To elucidate the role of the insulin receptor (IR) in collecting duct (CD), we bred mice with IR selectively deleted from CD principal cells using an aquaporin-2 promoter to drive Cre-recombinase expression. Young, adult male knockout (KO) mice had altered plasma and electrolyte homeostasis under high- (HS) and low-sodium (LS) diets, relative to wild-type (WT) littermates. One week of LS feeding led to a significant reduction in urine potassium (K+) and sodium (Na+) excretion in KO, and a reduction in the ratio of Na+to chloride (Cl) in plasma, relative to WT. HS diet (1 wk) increased plasma K+and reduced urine Na+to Clratio in the KO. Furthermore, KO mice had a significantly ( P = 0.025) blunted natriuretic response to benzamil, an epithelial sodium channel (ENaC) antagonist. Western blotting of cortex homogenates revealed modestly, but significantly (∼15%), lower band density for the β-subunit of ENaC in the KO vs. WT mice, with no differences for the α- or γ-subunits. Moreover, blood pressure (BP), measured by radiotelemetry, was significantly lower in KO vs. WT mice under basal conditions (mmHg): 112 ± 5 (WT), 104 ± 2 (KO), P = 0.023. Chronic insulin infusion reduced heart rate in the WT, but not in the KO, and modestly reduced BP in the WT only. Overall, these results support a fundamental role for insulin through its classic receptor in the modulation of electrolyte homeostasis and BP.

Publisher

American Physiological Society

Subject

Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3