Localization of thiazide-sensitive Na+-Cl− cotransport and associated gene products in mouse DCT

Author:

Câmpean Valentina1,Kricke Jörn1,Ellison David2,Luft Friedrich C.3,Bachmann Sebastian1

Affiliation:

1. Department of Anatomy and

2. Department of Internal Medicine, Oregon Health Sciences University, Portland, Oregon 97201

3. Franz Volhard Clinic, Medical Faculty of the Charité, Humboldt University, 13353 Berlin, Germany; and

Abstract

First published August 8, 2001; 10.1152/ajprenal.00148.2001.—The mammalian distal nephron develops a complex assembly of specialized cell types to accomplish the fine adjustment of urinary electrolyte composition. The epithelia of the distal convoluted tubule (DCT), the connecting tubule (CNT), and the cortical collecting duct (CCD) show an axial structural heterogeneity that has been functionally elucidated by the localization of proteins involved in transepithelial ion transport. We compared the distribution of the thiazide-sensitive Na+-Cl cotransporter (TSC), basolateral Na+/Ca2+ exchanger (Na/Ca), cytosolic calcium-binding proteins calbindin D28K and parvalbumin, and the key enzyme for selective aldosterone actions, 11β-hydroxysteroid-dehydrogenase 2 (11HSD2), in the distal convolutions of the mouse. In the mouse, as opposed to the rat, we found no clear subsegmentation of the DCT into a proximal (DCT1) and a distal (DCT2) portion. The TSC was expressed along the entire DCT. Na/Ca and calbindin D28K were similarly expressed along most of the DCT, with minor exceptions in the initial portion of the DCT. Both were also present in the CNT. Parvalbumin was found in the entire DCT, with an occasional absence from short end portions of the DCT, and was not present in CNT. 11HSD2 was predominantly located in the CNT and CCD. Short end portions of DCT only occasionally showed the 11HSD2 signal. We also observed an overlap of 11HSD2 immunoreactivity and mRNA staining. Our observations will have implications in understanding the physiological effects of gene disruption and targeting experiments in the mouse.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3