PAR-2 elicits afferent arteriolar vasodilation by NO-dependent and NO-independent actions

Author:

Trottier Greg1,Hollenberg Morley1,Wang Xuemei1,Gui Yu1,Loutzenhiser Kathy1,Loutzenhiser Rodger1

Affiliation:

1. Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada T2N 4N1

Abstract

Proteinase-activated receptors (PARs) are a novel class of G protein-coupled receptors that respond to signals through endogenous proteinases. PAR activation involves enzymatic cleavage of the extracellular NH2-terminal domain and unmasking of a new NH2 terminus, which serves as an anchored ligand to activate the receptor. At least four PAR subtypes have been identified. In the present study, we used the in vitro perfused hydronephrotic rat kidney to examine the effects of activating PAR-2 on the afferent arteriole. The synthetic peptide SLIGRL-NH2, which corresponds to the exposed ligand sequence and selectively activates PAR-2, did not alter basal afferent arteriolar diameter but caused a concentration-dependent vasodilation (3–30 μM) of arterioles preconstricted by angiotensin II (0.1 nM). A modified peptide sequence (LSIGRL-NH2, inactive at PAR-2) had no effect. This vasodilation was characterized by an initial transient component followed by a smaller sustained response. A similar pattern of vasodilation was seen when SLIGRL-NH2 was administered to isolated perfused normal rat kidney. The sustained component of the PAR-2-induced afferent arteriolar vasodilation was eliminated by nitric oxide (NO) synthase inhibition (100 μM nitro-l-arginine methyl ester). In contrast, the transient vasodilation persisted under these conditions. This transient response was not observed when afferent arterioles were preconstricted with elevated KCl, suggesting involvement of an endothelium-derived hyperpolarizing factor. Finally, RT-PCR revealed the presence of PAR-2 mRNA in isolated afferent arterioles. These findings indicate that PAR-2 is expressed in the afferent arteriole and that its activation elicits afferent arteriolar vasodilation by NO-dependent and NO-independent mechanisms.

Publisher

American Physiological Society

Subject

Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3