RS1 (RSC1A1) regulates the exocytotic pathway of Na+-d-glucose cotransporter SGLT1

Author:

Veyhl Maike,Keller Thorsten,Gorboulev Valentin,Vernaleken Alexandra,Koepsell Hermann

Abstract

The product of gene RSC1A1, named RS1, participates in transcriptional and posttranscriptional regulation of the sodium-d-glucose cotransporter SGLT1. Using coexpression in oocytes of Xenopus laevis, posttranscriptional inhibition of human SGLT1 (hSGLT1) and some other transporters by human RS1 (hRS1) was demonstrated previously. In the present study, histidine-tagged hRS1 was expressed in oocytes or Sf9 cells and purified using nickel(II)-charged nitrilotriacetic acid-agarose. hRS1 protein was injected into oocytes expressing hSGLT1 or the human organic cation transporter hOCT2, and the effect on hSGLT1-mediated uptake of methyl-α-d-[14C]glucopyranoside ([14C]AMG) or hOCT2-mediated uptake of [14C]tetraethylammonium ([14C]TEA) was measured. Within 30 min after the injection of hRS1 protein, hSGLT1-expressed AMG uptake or hOCT2-expressed TEA uptake was inhibited by ∼50%. Inhibition of AMG uptake was decreased when a dominant negative mutant of dynamin I was coexpressed and increased after stimulation of PKC. Inhibition remained unaltered when endocytosis was inhibited by chlorpromazine, imipramine, or filipin but was prevented when exocytosis was inhibited by botulinum toxin B or when the release of vesicles from the TGN and endosomes was inhibited by brefeldin A. Inhibition of hSGLT1-mediated AMG uptake and hOCT2-mediated TEA uptake by hRS1 protein were decreased at an enhanced intracellular AMG concentration. The data suggest that hRS1 protein exhibits glucose-dependent, short-term inhibition of hSGLT1 and hOCT2 by inhibiting the release of vesicles from the trans-Golgi network.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3