Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy

Author:

Verzola Daniela,Gandolfo Maria Teresa,Gaetani Gianfranco,Ferraris Annamaria,Mangerini Rosa,Ferrario Franco,Villaggio Barbara,Gianiorio Fabio,Tosetti Fanny,Weiss Ursula,Traverso Paolo,Mji Mariano,Deferrari Giacomo,Garibotto Giacomo

Abstract

We examined the hypothesis that senescence represents a proximate mechanism by which the kidney is damaged in type 2 diabetic nephropathy (DN). As a first step, we studied whether the senescence-associated β-galactosidase (SA-β-Gal) and the cell cycle inhibitor p16INK4Aare induced in renal biopsies from patients with type 2 DN. SA-β-Gal staining was approximately threefold higher ( P < 0.05) than in controls in the tubular compartment of diabetic kidneys and correlated directly with body mass index and blood glucose. P16INK4Aexpression was significantly increased in tubules ( P < 0.005) and in podocytes ( P = 0.04). Nuclear p16INK4Ain glomeruli was associated with proteinuria ( P < 0.002), while tubular p16INK4Awas directly associated with body mass index, LDL cholesterol, and HbA1c ( P < 0.001–0.05). In a parallel set of experiments, proximal tubule cells passaged under high glucose presented a limited life span and an approximately twofold increase in SA-β-Gal and p16INK4Aprotein. Mean telomere lengths decreased ∼20% as an effect of replicative senescence. In addition, mean telomere decreased further by ∼30% in cells cultivated under high glucose. Our results show that the kidney with type 2 diabetic nephropathy displays an accelerated senescent phenotype in defined renal cell types, mainly tubule cells and, to a lesser extent, podocytes. A similar senescent pattern was observed when proximal tubule cell cultures where incubated under high-glucose media. These changes are associated with shortening tubular telomere length in vitro. These findings indicate that diabetes may boost common pathways involving kidney cell senescence, thus reinforcing the role of the metabolic syndrome on biological aging of tissues.

Publisher

American Physiological Society

Subject

Physiology

Cited by 212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3