Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK

Author:

Davies Matthew123,Fraser Scott A.1,Galic Sandra4,Choy Suet-Wan123,Katerelos Marina1,Gleich Kurt1,Kemp Bruce E.4,Mount Peter F.123,Power David A.123

Affiliation:

1. Kidney Laboratory, Institute for Breathing and Sleep, University of Melbourne, Heidelberg, Victoria, Australia;

2. Department of Nephrology, University of Melbourne, Heidelberg, Victoria, Australia;

3. Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia; and

4. St. Vincent's Institute, Fitzroy, Victoria, Australia

Abstract

Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels. When we examined Na+ transporter expression, Na+-K+-2Cl cotransporter (NKCC2) was unchanged in whole kidney and reduced in the cortex, Na+-Cl cotransporter (NCC) and α-epithelial Na+ channel (ENaC) and γ-ENaC were unchanged, and β-ENaC was reduced. Phosphorylation of NCC was unaltered. Activating phosphorylation of NKCC2 at S126 was increased 2.5-fold. Activation of STE-20/SPS1-related proline-alanine-rich protein kinase (SPAK)/oxidative stress responsive 1 kinase (OSR1) was increased in kidneys from HFD-fed mice, and enhanced phosphorylation of NKCC2 at T96/T101 was evident in the cortex. Increased activity of NKCC2 in vivo was confirmed with diuretic experiments. HFD-fed mice had reduced activating phosphorylation of AMP-activated protein kinase (AMPK) in the renal cortex. In vitro, activation of AMPK led to a reduction in phospho-SPAK/phospho-OSR1 in AMPK+/+ murine embryonic fibroblasts (MEFs), but no effect was seen in AMPK−/− MEFs, indicating an AMPK-mediated effect. Activation of the with no lysine kinase/SPAK/OSR1 pathway with low-NaCl solution invoked a greater elevation in phospho-SPAK/phospho-OSR1 in AMPK−/− MEFs than in AMPK+/+ MEFs, consistent with a negative regulatory effect of AMPK on SPAK/OSR1 phosphorylation. In conclusion, this study identifies increased phosphorylation of NKCC2 on S126 as a hitherto-unrecognized mediator of enhanced Na+ reabsorption in obesity and identifies a new role for AMPK in regulating the activity of SPAK/OSR1.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3