Flow regulation of collecting duct endothelin-1 production

Author:

Lyon-Roberts Brianna1,Strait Kevin A.1,van Peursem Evan2,Kittikulsuth Wararat2,Pollock Jennifer S.2,Pollock David M.2,Kohan Donald E.1

Affiliation:

1. Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and

2. Vascular Biology Center, Medical College of Georgia, Augusta, Georgia

Abstract

Collecting duct (CD) endothelin-1 (ET-1) is an important autocrine inhibitor of CD Na+reabsorption. Salt loading is thought to increase CD ET-1 production; however, definitive evidence of this, as well as understanding of the mechanisms transducing this effect, is lacking. Tubule fluid flow increases in response to Na+loading; hence, we studied flow modulation of CD ET-1 production. Three days of a high-salt diet increased mouse and rat inner medullary CD (IMCD) ET-1 mRNA expression. Acute furosemide infusion increased urinary ET-1 excretion in anesthetized rats. Primary cultures of mouse or rat IMCD detached in response to flow using a closed perfusion chamber, consequently a CD cell line (mpkCCDcl4) was examined. Flow increased ET-1 mRNA at shear stress rates exceeding 1 dyne/cm2, with the maximal effect seen between 2 and 10 dyne/cm2. Induction of ET-1 mRNA was first evident after 1 h, and most apparent after 2 h, of flow. Inhibition of calmodulin or dihydropyridine-sensitive Ca2+channels did not alter the flow response; however, chelation of intracellular Ca2+or removal of extracellular Ca2+largely prevented flow-stimulated ET-1 mRNA accumulation. Downregulation of protein kinase C (PKC) using phorbol 12-myristate 13-acetate, or PKC inhibition with calphostin C, markedly reduced flow-stimulated ET-1 mRNA levels. Flow-stimulated ET-1 mRNA accumulation was abolished by inhibition of phospholipase C (PLC). Taken together, these data indicate that flow increases CD ET-1 production and this is dependent on extracellular and intracellular Ca2+, PKC, and PLC. These studies suggest a novel pathway for coupling alterations in extracellular fluid volume to CD ET-1 production and ultimately control of CD Na+reabsorption.

Publisher

American Physiological Society

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3