Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-κB activation

Author:

Ohga Sakiko,Shikata Kenichi,Yozai Kosuke,Okada Shinichi,Ogawa Daisuke,Usui Hitomi,Wada Jun,Shikata Yasushi,Makino Hirofumi

Abstract

Thiazolidinedione (TZD), a ligand for peroxisome proliferator-activated receptor-γ (PPAR-γ), exerts anti-inflammatory effects independently of the insulin-sensitizing effect. In the present study, we tested the hypothesis that TZD prevents the progression of diabetic nephropathy by modulating the inflammatory process. Five-week-old Sprague-Dawley rats were divided into three groups: 1) nondiabetic control rats (non-DM), 2) diabetic rats (DM), and 3) diabetic rats treated with pioglitazone (DM+pio). Diabetes was induced by injection with streptozotocin (STZ). The DM+pio group received 0.0002% pioglitazone mixed in chow for 8 wk after induction of diabetes. Blood glucose and HbA1c were elevated in diabetic rats but did not change by treatment with pioglitazone. Pioglitazone reduced urinary albumin excretion and glomerular hypertrophy, suppressed the expression of transforming growth factor (TGF)-β, type IV collagen, and ICAM-1, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, renal NF-κB activity was increased in diabetic rats and reduced by pioglitazone. PPAR-γ was expressed in glomerular endothelial cells in the diabetic kidney and in cultured glomerular endothelial cells. High-glucose conditions increased the expression of ICAM-1 and the activation of NF-κB in cultured glomerular endothelial cells. These changes were reduced by pioglitazone, ciglitazone, and pyrrolidine dithiocarbamate, an inhibitor of NF-κB. However, pioglitazone did not show the changes in the presence of PPAR-γ antagonist GW9662. Our results suggest that the preventive effects of pioglitazone may be mediated by its anti-inflammatory actions, including inhibition of NF-κB activation, ICAM-1 expression, and macrophage infiltration in the diabetic kidney.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3