Author:
Rickard Alice,Portell Craig,Kell Pamela J.,Vinson Suzanne M.,McHowat Jane
Abstract
Increased mast cell numbers and mast cell activation represent one of the prevalent etiologic theories for interstitial cystitis, an inflammatory condition in the bladder. This study was designed primarily to determine whether increased mast cell tryptase in the bladder wall may play a role in activating bladder endothelial cell phospholipase A2(PLA2), leading to increased inflammatory phospholipid metabolite accumulation, which may propagate the inflammatory process. We stimulated human bladder microvascular endothelial cells with thrombin or tryptase and measured the activation of PLA2and the production of multiple membrane phospholipid-derived inflammatory mediators. Thrombin and tryptase stimulation resulted in activation of a Ca2+-independent PLA2, leading to increased release of arachidonic acid and prostacyclin and increased production of platelet-activating factor. These responses were blocked completely by pretreatment of human bladder microvascular endothelial cells with the Ca2+-independent PLA2-selective inhibitor bromoenol lactone. The combination of increased prostacyclin and platelet-activating factor in the bladder circulation may result in vasodilation and increased polymorphonuclear leukocyte adherence to the endothelium and may facilitate recruitment of polymorphonuclear leukocytes to the bladder wall of patients with interstitial cystitis.
Publisher
American Physiological Society
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献