Vasopressin induces expression of the Cl−/HCO3− exchanger SLC26A7 in kidney medullary collecting ducts of Brattleboro rats

Author:

Petrovic Snezana,Amlal Hassane,Sun Xuming,Karet Fiona,Barone Sharon,Soleimani Manoocher

Abstract

SLC26A7 is a newly identified basolateral Cl/HCO3 exchanger specific to α-intercalated cells of the outer medullary collecting duct (OMCD). The purpose of the present experiments was to examine the expression of SLC26A7 in kidneys of vasopressin-deficient Brattleboro rats before and after treatment with desamino-Cys1,d-Arg8-vasopressin (dDAVP). Brattleboro rats were treated with dDAVP, a vasopressin analog, for 8 days, and their kidneys were examined for the expression of SLC26A7. The expression of SLC26A7 protein, as examined by immunofluorescence, was undetectable in kidneys of Brattleboro rats. However, treatment with dDAVP induced expression of SLC26A7 protein, restoring it to levels observed in normal rats. These results were verified by Western blot analysis. The mRNA expression of SLC26A7 remained unchanged in response to dDAVP. Immunofluorescent labeling demonstrated abundant levels of anion exchanger type 1 in the OMCD of Brattleboro rats and a mild reduction in response to dDAVP. The abundance of H+-ATPase was not affected by dDAVP. The increased SLC26A7 expression directly correlated with enhanced aquaporin-2 expression, which is proportional to increased interstitial osmolarity in the medulla. In conclusion, vasopressin increases the expression of SLC26A7 protein through posttranscriptional mechanisms in the OMCD. The induction of SLC26A7 by vasopressin in OMCD cells of Brattleboro rats is likely an attempt by cells to regulate their cell volume and maintain HCO3 absorption in a state associated with increased interstitial medullary tonicity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3