Differential effects of salt on renal hemodynamics and potential pressure transmission in stroke-prone and stroke-resistant spontaneously hypertensive rats

Author:

Abu-Amarah Isam,Bidani Anil K.,Hacioglu Rifat,Williamson Geoffrey A.,Griffin Karen A.

Abstract

Salt-supplemented stroke-prone spontaneously hypertensive rats (SHRsp) develop more severe hypertension-induced renal damage (HIRD) compared with their progenitor SHR. The present studies were performed to examine whether in addition to increasing the severity of hypertension salt also enhanced the transmission of such hypertension to the renal vascular bed in the SHRsp. “Step” and “dynamic” renal blood flow (RBF) autoregulation (AR) were examined in ∼12-wk-old SHR and SHRsp after 3–5 days of an 8% NaCl diet. During step AR under anesthesia ( n = 8–11), RBF was significantly higher in the SHRsp at all perfusion pressures ( P < 0.01), but AR capacity was not different. Similarly, in separate conscious chronically instrumented rats ( n = 8 each), both blood pressure (BP) and RBF were modestly but significantly higher at baseline before salt in the SHRsp ( P < 0.05). However, transfer function analysis did not show significant differences in the admittance gain parameters. However, after 3–5 days of salt, although average BP was not significantly altered in either strain, RBF increased further in the SHRsp and there was a significantly greater transfer of BP into RBF power in the SHRsp. This was reflected in the significantly higher admittance gain parameters at most frequencies including the heartbeat frequency ( P < 0.05 maximum). These differential hemodynamic effects of salt have the potential to enhance BP transmission to the renal vascular bed and also contribute to the more severe HIRD observed in the salt-supplemented SHRsp.

Publisher

American Physiological Society

Subject

Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3