Cilostazol inhibits uremic toxin–induced vascular smooth muscle cell dysfunction: role of Axl signaling

Author:

Lee Chien-Hsing1,Hung Yi-Jen1,Shieh Yi-Shing23,Chien Chu-Yen4,Hsu Yu-Juei5,Lin Chih-Yuan6,Chiang Chi-Fu4,Huang Chia-Luen1,Hsieh Chang-Hsun1

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan;

2. School of Dentistry, National Defense Medical Center, Taipei, Taiwan;

3. Department of Oral Diagnosis and Pathology, Tri-Service General Hospital, Taipei, Taiwan;

4. Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan;

5. Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; and

6. Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

Abstract

Chronic kidney disease (CKD) is associated with increased cardiovascular mortality, and vascular smooth muscle cell (VSMC) dysfunction plays a pivotal role in uremic atherosclerosis. Axl signaling is involved in vascular injury and is highly expressed in VSMCs. Recent reports have shown that cilostazol, a phosphodiesterase type 3 inhibitor (PDE3), can regulate various stages of the atherosclerotic process. However, the role of cilostazol in uremic vasculopathy remains unclear. This study aimed to identify the effect of cilostazol in VSMCs in the experimental CKD and to investigate whether the regulatory mechanism occurs through Axl signaling. We investigated the effect of P-cresol and cilostazol on Axl signaling in A7r5 rat VSMCs and the rat and human CKD models. From the in vivo CKD rats and patients, aortic tissue exhibited significantly decreased Axl expression after cilostazol treatment. P-cresol increased Axl, proliferating of cell nuclear antigen (PCNA), focal adhesion kinase (FAK), and matrix metalloproteinase-2 (MMP-2) expressions, decreased caspase-3 expression, and was accompanied by increased cell viability and migration. Cilostazol significantly reversed P-cresol-induced Axl, downstream gene expressions, and cell functions. Along with the increased Axl expression, P-cresol activated PLCγ, Akt, and ERK phosphorylation and cilostazol significantly suppressed the effect of P-cresol. Axl knockdown significantly reversed the expressions of P-cresol-induced Axl-related gene expression and cell functions. Cilostazol with Axl knockdown have additive changes in downstream gene expression and cell functions in P-cresol culture. Both in vitro and in vivo experimental CKD models elucidate a new signal transduction of cilostazol-mediated protection against uremic toxin-related VSMCs dysfunction and highlight the involvement of the Axl signaling and downstream pathways.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3