Renin-angiotensin system transgenic mouse model recapitulates pathophysiology similar to human preeclampsia with renal injury that may be mediated through VEGF

Author:

Denney J. Morgan1,Bird Cynthia1,Gendron-Fitzpatrick Annette2,Sampene Emmanuel1,Bird Ian M.3,Shah Dinesh M.1

Affiliation:

1. Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin;

2. Comparative Pathology Laboratory, Research Animal Resource Center, University of Wisconsin-Madison, Madison, Wisconsin; and

3. Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin

Abstract

Using a transgenic cross, we evaluated features of preeclampsia, renal injury and the sFlt1/VEGF changes. Transgenic hAGT and hREN, or wild-type (WT) C57Bl/6 mice were cross-bred: female hAGT × male hREN for preeclampsia (PRE) model and female WT × male WT for pregnant controls (WTP). Samples were collected for plasma VEGF, sFlt1, and urine albumin. Blood pressures (BP) were monitored by telemetry. Vascular reactivity was investigated by wire myography. Kidneys and placenta were immunostained for sFlt1 and VEGF. Eleven PRE and 9 WTP mice were compared. PRE more frequently demonstrated albuminuria, glomerular endotheliosis (80% vs. 11%; P = 0.02), and placental necrosis (60% vs. 0%; P < 0.01). PRE group demonstrated declining BPs with advancing gestation. Plasma sFlt1 increased across pregnancy in PRE; VEGF did not vary. IHC demonstrated the presence of sFlt1 in glomeruli, lymphatics, and collecting tubules of PRE kidneys, suggesting excretion. VEGF immunostaining was increased specifically in the glomeruli of PRE kidneys. Placenta in PRE showed marked immunostaining for sFlt1. We conclude that this transgenic model of preeclampsia recapitulates human preeclamptic state with high fidelity, and that, vascular adaptation to pregnancy is suggested by declining BPs and reduced vascular response to PE and increased response to acetylcholine. Placental damage with resultant increased release of sFlt1, proteinuria, deficient spiral artery remodeling, and glomerular endotheliosis were observed in this model of PRE. Increased VEGF binding to glomerular endothelial cells in this model of PRE is similar to human PRE and leads us to hypothesize that renal injury in preeclampsia may be mediated through local VEGF.

Funder

Dept of OB/GYN MFM Fellowship Research Funds

Dept of OB/GYN Start-up Funds

Publisher

American Physiological Society

Subject

Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3