Affiliation:
1. Department of Physiology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0576.
Abstract
The role of histamine (H) and prostaglandins (PGs) in the renal vasoconstriction prompted by a 10-min intrarenal infusion of norepinephrine (NE, 0.2 micrograms), antidiuretic hormone (ADH, 10 mU), or angiotensin II (ANG II, 0.05 micrograms) was evaluated in anesthetized dogs (amounts are per min per kg). Renal blood flow (RBF, flow probe) decreased four- to fivefold during the 1st min of infusion with each agonist but then gradually returned toward base line. This “escape” was greatest with ADH, less with NE, and small with ANG II. There was a postinfusion reactive hyperemia (RH) only after NE; NE-RH was 4.26 +/- 0.75 (SE) ml/g. Meclofenamate (MFA) reduced NE-RH to 60 +/- 11% of control and decreased NE escape. The H1-receptor antagonist, chlorpheniramine (CP), decreased NE-RH to 24 +/- 5% of control and reduced NE escape. MFA slowed, but did not block, ADH escape and had little effect on ANG II escape. CP did not affect ADH or ANG II escape. The histidine decarboxylase inhibitor, p-toluenesulfonohydrazine, did not affect NE escape but decreased NE-RH to 22 +/- 6% of control. Bolus injections of ADH during a constant infusion of the hormone were not vasoactive, indicating a tachyphylaxis-like phenomenon; this was not found with ANG II or NE. Finally, the excretion of histamine-like material increased from a control value of 0.69 +/- 0.08 to 1.28 +/- 0.28 micrograms/min during NE-RH. These results indicate that NE releases histamine and PGs from the kidney and that PGs account, primarily, for NE escape, whereas histamine accounts, primarily, for NE-RH.
Publisher
American Physiological Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献