Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum

Author:

Sandoval Ruben M.1,Molitoris Bruce A.1

Affiliation:

1. Division of Nephrology, the Indiana Center for Biological Microscopy, Indiana University School of Medicine and the Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202

Abstract

Previous mechanisms describing how aminoglycosides exert their cellular toxicity, including lysosomal accumulation, rupture, and release, cannot account for the rapidity and extent of the observed subcellular and organ effects. Using immunoamplification techniques and colocalization with epitopes of the endoplasmic reticulum (ER), we report rapid retrograde transport of gentamicin to the ER. Additionally, exposure times of 2 and 4 h in LLC-PK1cells produced cytosolic release and nuclear association. Cellular internalization and trafficking of aminoglycoside structural analogs, amine-containing cationic fluorescent dextrans of 3,000 molecular weight, corroborated these findings. However, identical anionic fluorescent dextrans, or larger cationic dextrans, of 10,000 molecular weight, failed to traverse from the ER into the cytosol or localize within the nucleus. These studies suggest that a pathway exists that transports internalized aminoglycosides, and other small-molecular-weight cationic compounds, in a retrograde manner through the Golgi complex and to the ER. From there, these compounds move into the cytosol for delivery throughout the cell. To quantify the potential toxic effects of cytosolic aminoglycoside release, experiments examining mitochondrial membrane potential in the continued presence of extracellular gentamicin were undertaken and demonstrated a significant reduction after 4 and 8 h. These observations provide a mechanism for the rapidly induced known cellular alterations, including aberrant vesicle fusion, mitochondrial toxicity/free radical generation, and decreased protein synthesis either by reduced transcription or translation after aminoglycoside exposure.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3