Affiliation:
1. Division of Nephrology, the Indiana Center for Biological Microscopy, Indiana University School of Medicine and the Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202
Abstract
Previous mechanisms describing how aminoglycosides exert their cellular toxicity, including lysosomal accumulation, rupture, and release, cannot account for the rapidity and extent of the observed subcellular and organ effects. Using immunoamplification techniques and colocalization with epitopes of the endoplasmic reticulum (ER), we report rapid retrograde transport of gentamicin to the ER. Additionally, exposure times of 2 and 4 h in LLC-PK1cells produced cytosolic release and nuclear association. Cellular internalization and trafficking of aminoglycoside structural analogs, amine-containing cationic fluorescent dextrans of 3,000 molecular weight, corroborated these findings. However, identical anionic fluorescent dextrans, or larger cationic dextrans, of 10,000 molecular weight, failed to traverse from the ER into the cytosol or localize within the nucleus. These studies suggest that a pathway exists that transports internalized aminoglycosides, and other small-molecular-weight cationic compounds, in a retrograde manner through the Golgi complex and to the ER. From there, these compounds move into the cytosol for delivery throughout the cell. To quantify the potential toxic effects of cytosolic aminoglycoside release, experiments examining mitochondrial membrane potential in the continued presence of extracellular gentamicin were undertaken and demonstrated a significant reduction after 4 and 8 h. These observations provide a mechanism for the rapidly induced known cellular alterations, including aberrant vesicle fusion, mitochondrial toxicity/free radical generation, and decreased protein synthesis either by reduced transcription or translation after aminoglycoside exposure.
Publisher
American Physiological Society
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献