Inhibition of smooth muscle contraction and ARF6 activity by the inhibitor for cytohesin GEFs, secinH3, in the human prostate

Author:

Herlemann Annika1,Keller Patrick1,Schott Melanie1,Tamalunas Alexander1,Ciotkowska Anna1,Rutz Beata1,Wang Yiming1,Yu Qingfeng1,Waidelich Raphaela1,Strittmatter Frank1,Stief Christian G.1,Gratzke Christian1,Hennenberg Martin1

Affiliation:

1. Department of Urology, Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

Prostate smooth muscle contraction is critical for etiology and treatment of male lower urinary tract symptoms (LUTS) and is promoted by small monomeric GTPases (RhoA and Rac). GTPases may be activated by guanosine nucleotide exchange factors (GEFs). GEFs of the cytohesin family may indirectly activate Rac, or ADP ribosylation factor (ARF) GTPases directly. Here we investigated the expression of cytohesin family GEFs and effects of the cytohesin inhibitor Sec7 inhibitor H3 (secinH3) on smooth muscle contraction and GTPase activities in human prostate tissues. Of all four cytohesin isoforms, cytohesin-1 and -2 showed the highest expression in real-time PCR. Western blot and fluorescence staining suggested that cytohesin-2 may be the predominant isoform in prostate smooth muscle cells. Contractions induced by norepinephrine, the α1-adrenoceptor agonist phenylephrine, the thromboxane A2 analog U-46619 , and endothelin-1 and -3, as well as neurogenic contractions induced by electric field stimulation (EFS), were reduced by secinH3 (30 µM). Inhibition of EFS-induced contractions appeared to have efficacy similar to that of inhibition by the α1-adrenoceptor antagonist tamsulosin (300 nM). Combined application of secinH3 plus tamsulosin caused larger inhibition of EFS-induced contractions than tamsulosin alone. Pull-down assays demonstrated inhibition of the small monomeric GTPase ARF6 by secinH3, but no inhibition of RhoA or Rac1. In conclusion, we suggest that a cytohesin-ARF6 pathway takes part in smooth muscle contraction. This may open attractive new possibilities in medical treatment of male LUTS.

Funder

Deutsche Forschungsgemeinschaft (DFG)

Friedrich-Baur-Stiftung

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3