Functional and molecular characterization of the shark renal Na-K-Cl cotransporter: novel aspects

Author:

Gagnon Édith1,Forbush Biff23,Flemmer Andreas W.2,Giménez Ignacio2,Caron Luc1,Isenring Paul1

Affiliation:

1. Groupe de Recherche en Néphrologie, Department of Medicine, Faculty of Medicine, Laval University, Laval, Quebec, Canada G1R 2J6;

2. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510; and

3. Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672

Abstract

The Na-K-Cl cotransporter isoform 1 (NKCC1) has been isolated from several species, including Squalus acanthias. A second kidney-specific isoform (NKCC2) has been cloned mainly from higher vertebrates. Here, we have isolated the S. acanthias NKCC2 and found that it is produced in at least four spliced variants (saNKCC2A, saNKCC2F, saNKCC2AF, and saNKCC2AFno8) of ∼1,090 residues. Expression of these transcripts in Xenopus laevis oocytes revealed that only the A and F variants are functional and that they are more active after incubation in low-Cl or hyperosmolar media. Rates of activation after exposure to these media were exceptionally rapid, demonstrating for the first time that the NKCC2 itself represents an important site of regulation by Cl and that extracellular domains are involved. Another remarkable finding in this study was the failure to identify NKCC2B, a variant found in the kidney of higher vertebrates and expressed specifically in macula densa cells. This result, in conjunction with the fact that the shark kidney lacks a well-developed juxtaglomerular apparatus, suggests that the B exon evolved as a result of selective pressure (presumably by exon duplication) and that a restricted relationship exists between NKCC2B and macula densa.

Publisher

American Physiological Society

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3