Paradoxes of nitric oxide in the diabetic kidney

Author:

Komers Radko12,Anderson Sharon13

Affiliation:

1. Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, and

2. Diabetes Center, Institute of Clinical and Experimental Medicine, Prague, Czech Republic

3. Portland Veterans Affairs Medical Center, Portland, Oregon 97201-2940; and

Abstract

As an important modulator of renal function and morphology, the nitric oxide (NO) system has been extensively studied in the diabetic kidney. However, a number of studies in different experimental and clinical settings have produced often confusing data and contradictory findings. We have reviewed a wide spectrum of findings and issues that have amassed concerning the pathophysiology of the renal NO system in diabetes, pointed out the controversies, and attempted to find some explanation for these discrepancies. Severe diabetes with profound insulinopenia can be viewed as a state of generalized NO deficiency, including in the kidney. However, we have focused our hypotheses and conclusions on the events occurring during moderate glycemic control with some degree of treatment with exogenous insulin, representing more the clinically applicable state of diabetic nephropathy. Available evidence suggests that diabetes triggers mechanisms that in parallel enhance and suppress NO bioavailability in the kidney. We hypothesize that during the early phases of nephropathy, the balance between these two opposing forces is shifted toward NO. This plays a role in the development of characteristic hemodynamic changes and may contribute to consequent structural alterations in glomeruli. Both endothelial (eNOS) and neuronal NO synthase can contribute to altered NO production. These enzymes, particularly eNOS, can be activated by Ca2+-independent and alternative routes of activation that may be elusive in traditional methods of investigation. As the duration of exposure to the diabetic milieu increases, factors that suppress NO bioavailability gradually prevail. Increasing accumulations of advanced glycation end products may be one of the culprits in this process. In addition, this balance is continuously modified by actual metabolic control and the degree of insulinopenia.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3