Calcium regulation of endothelin-1 synthesis in rat inner medullary collecting duct

Author:

Strait Kevin A.,Stricklett Peter K.,Kohan Jessica L.,Miller Margaux B.,Kohan Donald E.

Abstract

Collecting duct-derived endothelin-1 (ET-1) reduces blood pressure and inhibits Na and water reabsorption. Collecting duct ET-1 production is increased by volume expansion; however, the mechanism by which this occurs is unknown. We hypothesized that intracellular calcium, which is likely to be increased by volume expansion, regulates collecting duct ET-1 synthesis. Rat inner medullary collecting ducts (IMCD) were studied in primary culture. ET-1 release was decreased by 50–70% after chelation of intracellular calcium (BAPTA) or inhibition of CaM (W7) or CaMK (KN-93). These agents reduced ET-1 mRNA to a similar degree. CaM inhibition did not affect ET-1 mRNA stability. Transfection of IMCD with rat ET-1 promoter-luciferase constructs revealed maximal activity within 1.7 kb 5′ to the transcription start site; 5, 20, 35, and 90% of this activity were in the 0.08-, 0.37-, 1.0-, and 3.0-kb promoter regions, respectively. W7 markedly inhibited activity of the 3.0-kb but not 0.37- or 1.0-kb promoter regions. In contrast, W7 did not affect ET-1 release by rat aortic endothelial cells. Furthermore, transfected endothelial cells had maximal activity in the 0.37-kb region (as compared with the 1.7- and 3.0-kb regions), whereas W-7 had no effect on the activity of any of these promoter regions. In summary, IMCD ET-1 synthesis is regulated by calcium/CaM/CaMK-dependent pathways. The calcium/CaM-sensitive pathway is active in IMCD, but not endothelial cells. This suggests that IMCD-specific enhancer elements exist within the ET-1 promoter that confer unique calcium responsiveness.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3