TGF-β1 mediates sirolimus and cyclosporine A-induced alteration of barrier function in renal epithelial cells via a noncanonical ERK1/2 signaling pathway

Author:

Martin-Martin Natalia1,Slattery Craig1,McMorrow Tara1,Ryan Michael P.1

Affiliation:

1. UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland

Abstract

The immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) used in combination demonstrated beneficial effects in organ transplantation, but this combination can also result in increased adverse effects. We previously showed that not only CsA treatment but also its combination with SRL decreased paracellular permeability in renal proximal tubular cells by modification of the tight junction proteins, claudins, through ERK1/2 signaling pathway. In this present study, evidence is presented that not only CsA but also the combination of CsA/SRL may have adverse effects on the barrier function of renal proximal cells, at least in part, through the expression of the cytokine transforming growth factor (TGF)-β1. CsA treatment upregulated TGF-β1 gene expression and this upregulation was enhanced when CsA and SRL were applied together. Addition of TGF-β1 (5 ng/ml) altered the barrier function with increased transepithelial electrical resistance (TER) and claudin-1 expression. Use of a TGF-β1-blocking antibody or blockage of TGF-β1 receptor kinase activity with SD208 prevented the CsA- and CsA/SRL-induced increase in TER. No evidence was found in the present studies to indicate that CsA or CsA/SRL treatment activated the TGF-β1 Smad canonical signaling pathway, whereas addition of TGF-β1 (5 ng/ml) did activate the Smad pathway. Addition of the ERK1/2 signaling inhibitor U0126 was able to prevent the TGF-β1-mediated increase in TER and claudin expression. It is most likely that the CsA- and CsA/SRL-induced increases in TGF-β1 expression may not be sufficient to trigger the Smad pathway but however may trigger other TGF-β1 receptor-mediated signaling including the ERK1/2 signaling pathway.

Publisher

American Physiological Society

Subject

Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3