Reduced tolerance of immature renal tubules to anoxia by HSF-1 decoy

Author:

Sreedharan Rajasree,Riordan Michael,Wang Shirley,Thulin Gunilla,Kashgarian Michael,Siegel Norman J.

Abstract

Immature animals demonstrate an amplified heat shock response following a variety of insults compared with that seen in mature animals (M). The potential role of the heat shock response in modulating immature tolerance to injury was compared between rat pups, 10 postnatal days of age ( P10), and M. Baseline levels of the heat shock transcription factor (HSF-1) were substantially elevated in P10 compared with M animals. In uninjured P10 pups, HSF-1 level was comparable to that of M animals subjected to 45 min of ischemia. As anticipated, the integrity of suspensions of tubules exposed to anoxia was preserved in P10 animals (23% LDH release) compared with M (40%), P < 0.01. The effect of targeted inhibition of HSF-1 on tubular integrity was studied using a cyclic oligonucleotide decoy. The HSF-1 decoy increased the severity of anoxic injury in P10 pups to a level comparable with M animals. LDH release was 33% in decoy-treated P10 tubules compared with 40% in M. When P10 tubules were treated with scrambled decoy, resistance to anoxia remained intact (24%). The increased vulnerability of the tubular suspension to injury was specific to the HSF-1 decoy and proportional to the dose of decoy applied. This study demonstrates maturation in the abundance of HSF-1 in the immature rat kidney. The loss of resistance of immature tubules to anoxia with specific inhibition of HSF-1 may be due to its effect on the heat shock response or other signaling pathways of critical pathobiological importance in renal cell injury.

Publisher

American Physiological Society

Subject

Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pathogenesis of Acute Kidney Injury;Pediatric Nephrology;2022

2. Pathogenesis of Acute Kidney Injury;Pediatric Nephrology;2021

3. Heat Shock Factor Network in Kidney Diseases;Heat Shock Proteins;2020

4. Heat shock proteins in the kidney;Pediatric Nephrology;2016-02-25

5. Pathogenesis of Acute Kidney Injury;Pediatric Nephrology;2015-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3