Transepithelial transport and metabolism of glycine in S1, S2, and S3 cell types of the rabbit proximal tubule

Author:

Parks Lisa D.,Barfuss Delon W.1

Affiliation:

1. Biological Sciences, North Carolina State University, Raleigh,North Carolina 27695; and Biology Department, Georgia State University, Atlanta, GA 30302-4010

Abstract

In the first of two sets of experiments, the lumen-to-cell and cell-to-bath transport rates for glycine were measured in the isolated-perfused medullary pars recta (S3 cells) of the rabbit proximal tubule at multiple luminal glycine concentrations (0–2.0 mM). The lumen-to-cell transport of glycine was saturated, which permitted the calculation of the transport maximum of disappearance rate of glycine from the lumen (pmol · min−1 · mm tubular length−1), K m (mM), and paracellular leak (pmol · min−1 · mm tubular length−1 · mM−1) values for this transport mechanism; these values were 4.3, 0.3, and 0.03, respectively. The cell-to-bath transport did not saturate but showed a linear relationship to cellular glycine concentration, 0.58 pmol · min−1 · mm tubular length−1 · mM−1. The second set of experiments characterized the transport rate, cellular accumulation, and metabolic rate of lumen-to-cell transported [3H]glycine in all segments (cell types) of the proximal tubule, pars convoluta (S1 cells), cortical pars recta (S2 cells), and medullary pars recta (S3 cells). These proximal tubular segments were isolated and perfused at a single glycine concentration of 11.2 μM. From the results of this study and previous work (Barfuss DW and Schafer JA. Am J Physiol 236: F149–F162, 1979), we conclude that the axial heterogeneity for glycine lumen-to-cell and cell-to-bath transport capacity extends to the medullary pars recta (S3 cells; S1 > S2 < S3 for lumen-to-cell transport and S1 > S2 > S3 for cell-to-bath transport). Also, we conclude that lumen-to-cell transported glycine can be metabolized and its metabolic rate displays axial heterogeneity (S1 > S2 > S3). The physiological significances of these transport and metabolic characteristics of the S3 cell type permits the medullary pars recta to effectively recover glycine from very low luminal glycine concentrations and makes glycine available for protective and maintenance metabolism of the medullary pars recta.

Publisher

American Physiological Society

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3