Indoxyl sulfate induces complex redox alterations in mesangial cells

Author:

Gelasco Andrew K.,Raymond John R.

Abstract

Indoxyl sulfate is a protein metabolite that is concentrated in the serum of patients with chronic renal insufficiency. It also is a uremic toxin that has been implicated in the progression of chronic renal disease in rodent models. We have shown previously that mesangial cell redox status is related to activation of mitogen-activated protein kinases and cell proliferation, which are factors related to glomerular damage. We used three methods to examine the ability of indoxyl sulfate to alter mesangial cell redox as a possible mechanism for its toxicity. Indoxyl sulfate increases mesangial cell reduction rate in a concentration-dependent manner as demonstrated by redox microphysiometry. Alterations occurred at concentrations as low as 100 μM, with more marked alterations occurring at higher concentrations associated with human renal failure. We demonstrated that indoxyl sulfate induces the production of intracellular reactive oxygen species (ROS) in mesangial cells (EC50 = 550 μM) by using the ROS-sensitive fluorescent dye CM-DCF. ROS generation was only partially (∼50%) inhibited by the NADPH oxidase inhibitor diphenylene iodinium at low (≤300 μM) indoxyl sulfate concentrations. Diphenylene iodinium was without effect at higher concentrations of indoxyl sulfate. We also used electron paramagnetic spin resonance spectroscopy with extracellular and intracellular spin traps to show that indoxyl sulfate increases extracellular SOD-sensitive O2· production and intracellular hydroxyl radical production that may derive from an initial O2· burst. These results document that indoxyl sulfate, when applied to renal mesangial cells at pathological concentrations, induces rapid and complex changes in mesangial cell redox.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3