Action of EGF and PGE2on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells

Author:

Sauvant C.,Hesse D.,Holzinger H.,Evans K. K.,Dantzler W. H.,Gekle M.

Abstract

We recently showed that, in a proximal tubule cell line (opossum kidney cells), epithelial growth factor (EGF) stimulates basolateral organic anion transport (OAT) via ERK1/2, arachidonic acid, phospholipase A2, and generation of prostaglandins. PGE2binds the prostanoid receptor and, thus, activates adenylate cyclase and PKA, which stimulate basolateral organic anion uptake. In the present study, we investigated whether this regulatory cascade is also true 1) for ex vivo conditions in isolated renal proximal (S2) tubules from rabbit and 2) in a human renal epithelial cell line stably expressing human OAT1 (IHKE-hOAT1). EGF activated ERK1/2 in S2 tubules and IHKE-hOAT1, and, in both cases, inhibition of ERK activation (by U-0126) abolished this stimulation. In S2 tubules and IHKE-hOAT1, EGF led to an increase of organic anion uptake, which again was inhibited by U-0126. PGE2stimulated basolateral organic anion uptake in rabbit S2 tubules and IHKE-hOAT1. EGF- and PGE2-mediated stimulation of organic anion uptake was abolished by inhibition of PKA in rabbit S2 tubules and IHKE-hOAT1, respectively. We conclude that 1) stimulation of basolateral organic anion uptake by EGF or PGE2is a widespread (if not general) regulatory mechanism, 2) the signal transduction pathway involved seems to be general, 3) stimulation of basolateral organic anion uptake by EGF or PGE2is also present under ex vivo conditions and, thus, is not a cell culture artifact, 4) activation of OAT1 is sufficient to explain the stimulatory effects of EGF and PGE2in opossum kidney cells and rabbit S2 segments, and 5) stimulation of basolateral OAT1 by EGF or PGE2is also important in humans and, thus, may have clinical implications.

Publisher

American Physiological Society

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3