Author:
Warford-Woolgar Lori,Peng Claudia Yu-Chen,Shuhyta Jamie,Wakefield Andrew,Sankaran Deepa,Ogborn Malcolm,Aukema Harold M.
Abstract
Renal prostanoids are important regulators of normal renal function and maintenance of renal homeostasis. In diseased kidneys, renal cylooxygenase (COX) expression and prostanoid formation are altered. With the use of the Han:Sprague-Dawley- cy rat, the aim of this study was to determine the relative contribution of renal COX isoforms (protein, gene expression, and activity) on renal prostanoid production [thromboxane B2(TXB2, stable metabolite of TXA2), prostaglandin E2(PGE2), and 6-keto-prostaglandin F1α(6-keto-PGF1α, stable metabolite of PGI2)] in normal and diseased kidneys. In diseased kidneys, COX-1-immunoreactive protein and mRNA levels were higher and COX-2 levels were lower compared with normal kidneys. In contrast, COX activities were higher in diseased compared with normal kidneys for both COX-1 [0.05 ± 0.02 vs. 0.45 ± 0.11 ng prostanoids·min−1·mg protein−1( P < 0.001)] and COX-2 [0.64 ± 0.10 vs. 2.32 ± 0.22 ng prostanoids·min−1·mg protein−1( P < 0.001)]. As the relative difference in activity was greater for COX-1, the ratio of COX-1/COX-2 was higher in diseased compared with normal kidneys, although the predominant activity was still due to the COX-2 isoform in both genotypes. Endogenous and steady-state in vitro levels of prostanoids were ∼2–10 times higher in diseased compared with normal kidneys. The differences between normal and diseased kidney prostanoids were in the order of TXB2> 6-keto-PGF1α> PGE2, as determined by higher renal prostanoid levels and COX activity ratios of TXB2/6-keto-PGF1α, TXB2/PGE2, and 6-keto-PGF1α/PGE2. This specificity in both the COX isoform type and for the prostanoids produced has implications for normal and diseased kidneys in treatments involving selective inhibition of COX isoforms.
Publisher
American Physiological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献