Obstructive nephropathy and renal fibrosis

Author:

Klahr Saulo1,Morrissey Jeremiah12

Affiliation:

1. Departments of Internal Medicine and

2. Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110-1092

Abstract

Interstitial fibrosis has a major role in the progression of renal diseases. Several animal models are available for the study of renal fibrosis. The models of aminonucleoside-induced nephrotic syndrome, cyclosporin nephrotoxicity, and passive Heyman nephritis are characterized by molecular and cellular events similar to those that occur in obstructive nephropathy. Additionally, inhibition of angiotensin-converting enzyme exerts salutary effects on the progression of renal fibrosis in obstructive nephropathy. Unilateral ureteral obstruction (UUO) has emerged as an important model for the study of the mechanisms of renal fibrosis and also for the evaluation of the impact of potential therapeutic approaches to ameliorate renal disease. Many quantifiable pathophysiological events occur over the span of 1 wk of UUO, making this an attractive model for study. This paper reviews some of the ongoing studies that utilized a rodent model of UUO. Some of the findings of the animal model have been compared with observations made in patients with obstructive nephropathy. Most of the evidence suggests that the rodent model of UUO is reflective of human renal disease processes.

Publisher

American Physiological Society

Subject

Physiology

Cited by 483 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3