The full-length calcium-sensing receptor dampens the calcemic response to 1α,25(OH)2 vitamin D3 in vivo independently of parathyroid hormone

Author:

Egbuna Ogo,Quinn Steven,Kantham Lakshmi,Butters Robert,Pang Jiang,Pollak Martin,Goltzman David,Brown Edward

Abstract

1α,25(OH)2 vitamin D3 [1,25(OH)2D3] increases serum Ca2+ concentration in vivo, an action counteracted by activation of the Ca2+-sensing receptor (CaSR), which decreases parathyroid hormone (PTH) secretion and increases renal Ca2+ excretion. Relatively little is known of the role the CaSR plays in this response through its potentially direct actions in kidney, gut, and bone independently of PTH. We report PTH-independent roles of the CaSR in modulating the response to exogenous 1,25(OH)2D3 in mice with targeted disruption of both the CaSR and PTH genes (CP) compared with that in mice with disruption of the PTH gene alone (C+P) or wild-type mice (C+P+). After intraperitoneal injection of 0.5 ng/g body wt 1,25(OH)2D3, peak calcemic responses were observed at 24 h in all three genotypes in association with 1) a greater increase in serum Ca2+ in CP mice than in the other genotypes on a Ca2+-replete diet that was attenuated by a Ca2+-deficient diet and pamidronate, 2) increased urinary Ca2+-to-creatinine ratios (UCa/Cr) in the C+P and C+P+ mice but a lowered ratio in the CP mice on a Ca2+-replete diet, and 3) no increase in calcitonin (CT) secretion in the C+P+ and C+P mice and a small increase in the CP mice. PTH deficiency had the anticipated effects on the expression of key genes involved in Ca2+ transport at baseline in the duodenum and kidney, and injection of 1,25(OH)2D3 increased gene expression 8 h later. However, the changes in the genes evaluated did not fully explain the differences in serum Ca2+ seen among the genotypes. In conclusion, mice lacking the full-length CaSR have increased sensitivity to the calcemic action of 1,25(OH)2D3 in the setting of PTH deficiency. This is principally from enhanced 1,25(OH)2D3-mediated gut Ca2+ absorption and decreased renal Ca2+ excretion, without any differences in bone-related release of Ca2+ or CT secretion among the three genotypes that could explain the differences in their calcemic responses.

Publisher

American Physiological Society

Subject

Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3