Acid stress increases gene expression of proinflammatory cytokines in Madin-Darby canine kidney cells

Author:

Raj Suraja12,Scott David R.23,Nguyen Thomas124,Sachs George1235,Kraut Jeffrey A.1254

Affiliation:

1. Medical Services, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California;

2. Research Services, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California;

3. Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California;

4. Division of Nephrology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California

5. Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and

Abstract

Metabolic acidosis is thought to exacerbate chronic kidney disease in part by stimulating the release of potentially injurious substances. To define the genes whose expression is affected by exposure to an acidic milieus, we examined the effect of exposure of MDCK cells to pH 7.4 and pH 7.0 for 24 h on gene expression using a canine derived microarray. Exposure to this pH stress for 24 h led to increased expression of 278 genes (2.2% of the transcriptome) by at least 2-fold and 60 of these (21%) were upregulated by >3-fold. On the other hand, 186 genes (1.5% of the transcriptome) were downregulated by at least 2-fold and 16 of these (9%) were downregulated by 3-fold or more. Ten percent of the genes upregulated by at least threefold encode proinflammatory cytokine proteins, including colony stimulating factor 2, chemokine ligand 7, chemokine ligand 20, chemokine ligand 8, and interleukin-1α. Two others encode metallopeptidases. The most highly upregulated gene encodes a protein, lubricin, shown to be important in preventing cartilage damage and in tissue injury or repair. Upregulation of four genes was confirmed by quantitative PCR. Housekeeping genes were not increased. To examine the effect of decreasing medium pH, we measured intracellular pH (pHi) using 2,7-bis (2-carboxyethyl)5-carboxyfluorescein. With extracellular pH (pHo) of 7.0, pHi fell and remained depressed. These findings suggest that a pH stress alone can increase renal expression of proinflammatory and other genes that contribute to renal injury.

Publisher

American Physiological Society

Subject

Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3