Facilitated transport in vasa recta: theoretical effects on solute exchange in the medullary microcirculation

Author:

Edwards A.1,Pallone T. L.1

Affiliation:

1. Department of Chemical Engineering, Pennsylvania State University, University Park 16802, USA.

Abstract

A new theoretical model describing the exchange of water and solutes between the renal medullary interstitium and the microcirculation was developed to account for the presence of water channels and urea transporters, both of which were recently identified in the descending vasa recta (DVR) of the renal medulla. Small solutes, which are excluded from the water channels, are freely exchanged through a parallel pathway shared with water. The transcapillary concentration gradients of sodium and urea across the water channels induce water efflux from DVR, whereas classic Starling forces across the shared pathway favor volume uptake by DVR. Because small solute concentration gradients are large in the inner medulla, the model predicts net water removal from DVR, in agreement with experimental observations. The descending and ascending vasa recta (AVR) function as a countercurrent exchanger, the efficiency of which is inversely related to the net amount of solute taken up by the medullary microcirculation. Our results indicate that net solute removal from the medulla is governed by convective uptake into AVR and thus depends predominantly on the parameters affecting AVR transcapillary volume flux. The simulations also suggest that the urea transporter significantly enhances the exchange of both sodium and urea and might serve to abrogate a reduction in exchanger efficiency imparted by water channels.

Publisher

American Physiological Society

Subject

Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A mathematical model of the rat kidney: K+-induced natriuresis;American Journal of Physiology-Renal Physiology;2017-06-01

2. Impacts of Facilitated Urea Transporters on the Urine-Concentrating Mechanism in the Rat Kidney;Biological Fluid Dynamics: Modeling, Computations, and Applications;2014

3. The Urine Concentrating Mechanism and Urea Transporters;Seldin and Giebisch's The Kidney;2013

4. The Physiology of Water Homeostasis;Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance;2012-06-14

5. Urine Concentrating and Diluting Ability During Aging;The Journals of Gerontology Series A: Biological Sciences and Medical Sciences;2012-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3