Renal resistance to ANF in salt-depleted rats is independent of sympathetic or ANG-aldosterone systems

Author:

Veress A. T.1,Honrath U.1,Chong C. K.1,Sonnenberg H.1

Affiliation:

1. Department of Physiology, University of Toronto, Ontario, Canada.

Abstract

Chronic salt depletion was used as a model to study the mechanism of renal resistance to the natriuretic effect of atrial natriuretic factor (ANF). Rats were pretreated with furosemide and placed on a low-salt diet (<0.008% NaCl) for 1 wk before a clearance experiment. Compared with animals on a normal salt diet (0.4% NaCl), the natriuretic reponse to ANF administration was reduced by one order of magnitude and was quantitatively trivial. To assess the influence of the sympathoadrenergic system, different groups of rats were either subjected to acute unilateral renal denervation, to chronic adrenal enucleation to reduce circulating catecholamines, or to pretreatment with 6-hydroxydopamine (OHDA) to destroy sympathetic postganglionic nerve endings. None of these treatments was able to fully or even partially restore ANF natriuresis. To determine whether an effect of angiotensin on the kidney prevented the response, the specific receptor antagonist losartan (DuP-753) was administered during the week prior to the experiment. This treatment also did not influence ANF resistance. Similarly, bilateral adrenalectomy 2 wk before the experiment did not affect the renal ANF resistance in salt-depleted rats. The depressed excretory response could not be explained on the basis of reduced renal perfusion pressure or glomerular filtration rate. We conclude that undetermined compensatory mechanism(s) ensures renal salt conservation in this model in the face of even supraphysiological levels of ANF.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3