Disassociation of oxidant-induced ATP depletion and DNA damage from early cytotoxicity in LLC-PK1 cells

Author:

Andreoli S. P.1,Mallett C. P.1

Affiliation:

1. Indiana University Medical Center, Department of Pediatrics, Indianapolis 46223, USA.

Abstract

To determine the mechanism(s) of oxidant-mediated cell lysis in renal tubular epithelial cells, we determined ATP depletion, DNA damage, lipid peroxidation, and cytotoxicity in LLC-PK1 cells exposed to 500 microM hydrogen peroxide for 1 h with and without inhibitors of lipid peroxidation including a lazaroid compound, 2-methylaminochroman (2-MAC), and Trolox, a vitamin E analog. ATP levels were determined by luciferin-luciferase, DNA damage by the alkaline unwinding technique, lipid peroxidation by the generation of malondialdehyde, and early cytotoxicity (5 h) by the release of 51Cr, whereas late cytotoxicity (24 h) was determined by release of [3H]leucine from prelabeled cells. Cells exposed to 500 microM hydrogen peroxide demonstrated significant (P < 0.01) ATP depletion, DNA damage, and lipid peroxidation, followed by cell death at 5 h. Concentrations of 0.1–25 microM 2-MAC or 25–500 microM Trolox each markedly and significantly (P < 0.01) inhibited lipid peroxidation and early cytotoxicity but had little to no effect on ATP depletion or DNA damage. Thus oxidant-stressed cells remained intact for several hours despite significant ATP depletion and DNA damage when lipid peroxidation was inhibited with the antioxidant compounds. At 24 h, 2-MAG and Trolox had lost their protective effect, suggesting that mechanisms other than lipid peroxidation play a role in later cytotoxicity. We conclude that ATP depletion and DNA damage are not the primary mediators of early cytotoxicity following oxidant stress, whereas lipid peroxidation plays an central role in mediating early cytotoxicity following oxidant injury.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3