Podocytes are sensitive to fluid shear stress in vitro

Author:

Friedrich Colin,Endlich Nicole,Kriz Wilhelm,Endlich Karlhans

Abstract

Podocytes are exposed to mechanical forces arising from glomerular capillary pressure and filtration. It has been shown that stretch affects podocyte biology in vitro and plays a significant role in the development of glomerulosclerosis in vivo. However, whether podocytes are sensitive to fluid shear stress is completely unknown. In the present study, we therefore exposed cells of a recently generated conditionally immortalized mouse podocyte cell line to defined fluid shear stress in a flow chamber, mimicking flow of the glomerular ultrafiltrate over the surface of podocytes in Bowman's space. Shear stress above 0.25 dyne/cm2resulted in dramatic loss of podocytes but not of proximal tubular epithelial cells (LLC-PK1cells) after 20 h. At 0.015–0.25 dyne/cm2, lamellipodia formation in podocytes was enhanced and the actin nucleation protein cortactin was redistributed to the cell margins. Shear stress further diminished stress fibers and the presence of vinculin in focal adhesions. Linear zonula occludens-1 distribution at cell-cell contacts remained unaffected at low shear stress. At 0.25 dyne/cm2, the monolayer was broken up and remaining cell-cell contacts were reinforced by F-actin and α-actinin. Because the cytoskeletal changes induced by shear stress suggested the involvement of tyrosine kinases (TKs), we tested several TK inhibitors that were all without effect on podocyte number under static conditions. At 0.25 dyne/cm2, however, the TK inhibitors genistein and AG 82 were associated with marked podocyte loss. Our data demonstrate that podocytes are highly sensitive to fluid shear stress. Shear stress induces a reorganization of the actin cytoskeleton and activates specific tyrosine kinases that are required to withstand fluid shear stress.

Publisher

American Physiological Society

Subject

Physiology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3